
|ppnp(mn'uwiWi>uivMuü|j.iuii»mnii.iiNn""«^ '■"■ iipB^ppn^i-iwii".1'1'1«»" ' ■ '•miimi*m\t\vi"'^wmiimKmvmi^mmrmm*iiKmwmm5mmm*ll**l'*****,*r^**jni^m "'

AD-A015 125

DATACOMPUTER PROJECT

Computer Corporation of America

Prepared for:

Defense Advanced Research Projects Agency
Defense Supply Service

30 June 1975

DISTRIBUTED BY:

KJÜ1
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

••::"-- ■ -'■
 -- ^ .^^^**Mi^mtm*^^~~^-

"I,J"^,M" " . I . n .M..,.«..,!,,,, W
II II .»MUI,. II II .11111 >i m in Hlia|i^MMilllH|ip^p«nB*P<«v^|HVHpp«pp«pi«vq|q

■

D
D
D
0
D
0
D
D
Ö

D
D
D
D

279175
COMPUTER CORPORATION OF AMERICA

0}

in

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

January 1, 1S75 - June 30, 1975

Contract No. MDA903-7i<-C-0225

ARPA Order No. 2687

R«P'oduc«d by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commsre»
Springfield, VA. 33151

o ?^^>
^'' *& \

W*'* .,. ^

M^

a

Submitted to:

Defense Advanced Research Projects Agency
1^100 Wilson Boulevard
Arlington, Virginia 22209

DUHmU'flJII '^^™£8,
Approve i~. WW^ r^Baa*:

^•*am

MHHH M ^mmmm
tmammmmmm
 - ■' ■ •■i-- ■ ■ ■

«PMMWMmi^Kn^OT ■ ■ ' " "^ iti/mimnrmm*' i iiw.iuii.ii>«pip|ppnni»i 1 ■ ■■ ■ ■"■ ■

I

..

li
u
Ü

D
Ü

fl

li

D
;:

.:

i

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

January 1, 1975 to June 30, 1975

1

-

■

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was moni-
tored by tht U.S. Army Research Office, Defense Supply Ser-
vice ~ Wishington under Contract No. MDA9S3'7A-C-0225. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

I.

^MMJ ■^^ . ._ i

 ,ml,lli Il'1 ' ".-..iM.,.— , II, „

I

" I -«P^-—-^-~^

I
I

1

I
I

TABLE OF CONTENTS

1 OVERVIEW

2 System Description

2.1 Levels of Functional Abstraction

2.2 The Hardware Level

2.3 The Primary Operating System - TENEX

2.3.1 The TENEX Virtual Machine

2.3.2 The TENEX File System

2.3.2.1 File Naming

2.3.2.2 Byte-Oriented File Access

2.3.2.3 File/Process Address Space Sharing

2.3.3 TENEX Modificat!ons for the Datacomputer

2.4 The Pseudo Operating System - Services

2.4.1 The SV File System

2.4.1.1 The Directory System

2.4.1.2 Access to Datacomputer Files

2.4.2 The SV Input/Output System and Monitor

2.5 The User's Level - RH

2.5.1 User-Datacomputer Interactions

2.5.2 Request Handler Structure

2.5.2.1 The RH Compiler

2.5.2.2 Large File Considerations

T

3

3.1

Datacomputer Usage

Version 0/11 Usage Report

3

3

5

9

10

12

12

13

13

14

15

16

17

18

21

21

22

23

24

26

27

27

idy

am M^HM mmm^^mm m ^tem

 i^nfv^f^mB^ym i «lilUiiUH^i^P^PUPW^I^I nwiHPVW'"1 ■ 'M ' •"^ummm'^w m. wpnpMH

I
0
i.

..

::

i

i
i

3.2

3.3

4

4.1

4.1.1

4.1.2

4.1.3

4.2

4.2.1

4.2.2

4.2.2.

4.2.2.

4.2.3

4.2.4

4.3

4.3.1

4.3.2

4.3.3

5

5.1

5.2

5.3

6

6.1

Planning for Version 1

New User Contact

Software Development

Setvices

SDAX

Directory Cross Checker

TFN's

The Request Handler

Restriction Reiroval/Cleanup

Chaptered e'iles and Updating

1 The Container Address Table

2 Problems with Original Design

New Data Types

List Command Improvements

Support Programs

DCSUBR

RDC

DFTP

Documentatic'

Version 1 Manual

Support Program Documentation

Directory System PLH

Hardware / Site Progress

Site Improvements

ifc

29

30

31

31

31

32

33

34

34

35

38

39

41

42

43

^3

44

44

46

46

46

47

48

48

im mt - — ---■■■ -

"^»[»»■■••^■«■WWWV" ,u,. i i. iuw*m^mm*rm*mr^~* ■I« ' ■■•"■11« ■ I I« ^»■m» , 'rnwm^mmimmmiw*'\—' ■ > > -^^mmimMm! i i i IIII

0
■

1!
6.2 TDN Negotiations

11 6.3 TENEX Changefi

—

0 7 Seismic Data Base Support

1 7.1 Overview

7.2 SIP Acquisition

i 7.3 IMP/TIP Considerations

1! 8 Other Activities

a 8.1 NCC Paper

8.2 Performance Monitoring

II 8.3 Testing and Bug Monitoring

48

49

50

50

51

51

53

53

53

54

I
I
I
I
I

l it-

mmmmm KIM

i.uumuvmi^nnwp*« 1*1 ii titrnt^^^w^wimmm J»,IIIIIII i«paiii«ill<wil»i«i|Miw<P^^inn^^^^^MnW««>nni|inilP.ii ■ ■■•I«II«IIII I I nu^

i Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

A

1 OVERVIEW

This report describes our work on the Datacomouter, a

network data utility, from January 1, 1975 to June 30, 1975.

The Datacomputer project is supported by the Information

Processing Techniques Office of the Advanced Research Pro-

jects Agency of the Department of Defense. The current work

is being carried out under contract number MDA903-74-C-0225.

Related work discussed herein is supported by the Nuclear

Monitoring Research Office of ARPA under contract number

MDA903-74-0227.

Work during the reporting period has been concentrated

on t.ie development of Datacomputer Version 1, the first full

service version of the Datacomputer. Previously, experimen-

tal service has been provided by various early versions of

the Datacomputer, most recently (during the reporting

period) by Version 0/11. Major br^ fixes were the only pro-

gramming done on Verion 0/11 during the reporting period.

Preliminary goal setting and design for Version 2 of the

Datacomputer consumed some small effort.

The work is described in detail in sections 2-8. Sec-

tion 2 is a discussion of the Datacomputer architecture,

with emphasis on the increasing levels of functional

abstraction beginning with the hardware and moving outward.

Section 3 is a report on the usage of t^e Datacompater dur-

- 1 -

MkM
... - .

— - ■■ -

■P'11 " i m HI i^iiiiwmiuwpi^-m»«!« Hoi iiijilBwnn«wwpnBliB»P"W '-~ r in" i 'iwiajmi! mi*mv^*i^mi^***mmBm***9* •W""PW»»' .'im' ^m^qgmiv*

I
I
I
I
I
I
I
I
I
I
I

Setni-'»nnual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

ing the reporting period, and a discussion of new work being

done in the user services and support area. Section 4 is a

detailed discussion of the work on the Datacomputer software

carried out during the p«riod under discussion. Most of the

effort was concentrated in this area. Section 5 discusses

the on-going work of documenting the Datacomputer. Sectiov

6 describes progress made in the area of Datacomputer hard-

ware and operational support. Section 7 is a brief overview

of the NMRO work and its implications for the Datacomputer

in general. Finally, Section 8 Li a catch-all for minor but

important areas of Datacomputer development. The goals and

concepts of the Datacomputer are discussed at length in

Appendix 1, a paper delivered at the 197 5 National Computer

Conference.

- 2 -

•»«•^^^■»■^pw««^w»«iwpiwirw!^wBWiw^w»w«wp^iw»^iBi«wiwi»p^»^^'^?»-^^«i^^ i

0
D
fl

D

;:

;;

::

:

:

■
T

Semi-Annual Technical Report Datcoraputer Project
Computer Corporation of America July 31, 1975

System Description

The Datacomputer is a very large scale data storage

facility with substantial data-management capabilities. Its

design presupposes use as a data resource in a network of

n large-scale computers which are connected via medium speed

(50,000 bits/second) communications lines. The data storage

functions of the Datacomputer will support the storage of

files as large as a trillion bits, and the hardware facili-

ties will include a device with appropriate storage capaci-

ties (currently, an Ampex TBM is planned). The constraints

of network bandwidth make the inclusion of powerful delta

selection and subsetting facilities imperative in the design

of the data-management features of ehe Datacomputer. "To

transmit one trillion bits at 50,000 bits/second requires

approximately 231 days, assuming no hardware or software

ii problems during the transmission.)

2.1 Levels of Functional Abstraction

Many large computer systems may be usefully examined in

terms of their functional hierarchies. A level may be char-

acterized in two ways. First, aiore fundamental o^arations

which are provided by the previous level (and may already be

abstractions themselves) are combined into new, more power-

ful, and more abstract operations. For example, the stream

of magnetic flux reversals seen by the disk controller

- 3 -

—J^MMMBiMMM—«ill i ■!——M—— ■ ■^IIMI - —

nw~-^*^w»^™™Tpifww^^^r^»tBP»»IHPm(PPW"W»p i mi MIW««»-WWW»HW!«^B*«IW^^P r^mmmtmtMMm mm^^^mm

u
u
II
u
Ü

I

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

Ü

u
0
Ö

D
M::

becomes a stream of fixed (or variable) length blocks of

binary words when seen by the operating system. A subset of

this arbitrary collection of unformatted words is presented

to user programs as a "file" in a "file system". Second,

intermediate functions exist to prevent certain combinations

of operations which would damage system integrity from

occurring, and to hide other functions entirely from the

next level out.

The term normally used for the particular collection of

functions avail?ble to any given level of a system hierarchy

is "virtual machine". In many ways, the programmer working

at level n in such a system may behave as if level n-1 were

hardware; All n-1 functions are immutable and part of the

machine environment. Using terms that will be explained in

the rest of this section, the TENEX implementor programs a

PDP-10; the SV programmer programs a TENEX (which look? a

lot like a PDP-10 with some major abstractions) ; the Request

Handler programmer programs an SV machine, and the ultimate

user programs a Datacomputer. (We shall see that the set of

functions presented by the Request Handler is equivalent to

the Datacomputer virtual machine.)

The following four levels will be discussed in detail:

1) The hardware consists of a Digital Equipment Cor-

poration (DEC) PDP-10 and its supporting peripher-

- 4 -

iMMMHIIlMMIIMHM ■ ■ MMM JMMI MMk'AIUiMtflMlUlA*

nv^pntamww "■ '

Semi-Annual Technical Report
Computer Corporation of America

Datcoraputer Project
July 31, 1975

Ü

u

Ü

u
u

Ü

D
••

:;

2.2

als, communications links to terminals and the

ARPA Network, and a very large storage device.

2) The next level in the hierarchy, the TENEX opera-

ting system, is in direct control of the hardware

resources and provides many services to the Data-

computer .

3) The programs known collectively as SV or Services

are a pseudo-operating system which interacts with

TENEX, managing input/output, scheduling, and

storage strategies for Datacomputer files.

4) Finally, the Request Handler (RH) is the "user"

level interface to the Datacomputer. It accepts

control and data-management statements in "Data-

language", and provides messages concerning the

state of the Datacomputer job to the user. (Of

course, data flows in both directions under the

control of Datalanguage statements, and with the

help of the other levels of the system.)

The Hardware Level

Conceptually, the hardware for a Datacomputer is quite

simple. A processor of some sort is required along with some

form of primary store (e.g., core). In addition, one needs a

very large store (£.£., TBM) and a medium-to-high speed com-

- 5 -

MM MM

mmTm*m ■—"■ "- ■" w.. i i ii wiipHin. i iKiaai i m»m:wnm ^mm M ' ——

1 A

Ü

Ü
['
• •

U
Ü

:.

u
D

D
D

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

munications port. A great deal of efficiency can be gained

by adding one or more levels of intermediate storage such as

disc.

The hardware base of the Datacomputer as it is cur-

rently implemented consists of a processor, an address map-

ping device, three levels of store, medium and low speed

communications lines, and several I/O devices.

The processor is a Digital Equipment Corporation PDP-

10. CCA has a KA-10 CPU which is the oldest of several

models of PDP-10 processor currently available. A Bolt Bera-

nek and Newman "Pager" provides address translation for all

memory referencec, and (along with software in TENEX) pro-

vides the illusion of a 256K (IK = 1024) word primary store

regardless of the size of the physical memory.

The real primary store in the current Datacomputer is

208K words of 36 bit core memory. This includes five 16K DEC

ME-10'3 and one 128K STOR-10 from Cambridge Memories, Inc.

PDP-10 characters are typically stored five to a word, so

this is tha equivalent of slightly more than a million char-

acters of memory.

The system has two types of secondary store. Fi"3 spin-

dles of DEC RP02 disc (IBM 2314 equivalent) provide space

for the TENEX file system. These hold about four million 36

bit words each, for a total of 20 million words. In addi-

- 6 -

iMi mam

"^mPTWWPiPB"".»' 'lMii"ii,,">ii^wti^W«PWPlW^BPW»ipi^^^ >' "i|«"iii|uim > i ur—w^amm m v mi i 11 i j an IU«#II .inpi

Ü

Ü

Ü

0

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

tion, four spindles of CalComp 230 disc (IBi^ 33iid equiva-

lent) are attached to the PDP-10 via a Systems Concepts SA-

10 IBM data channel simulator. These discs each v»Ul store

approximately 20 million words of data. Currently, they

serve as the main file storage medium of the experimental

Datacomputer service. Ultimately,they will serve as staging

devices between the tertiary store and the PDP-10.

i
D

The real heart of the Datacomputer - the justification,

in fact, for its existence - is the tertiary store. The

tertiary store planned for the CCA datacomputer site is an

Ampex Tera-Bit Memory (TBM) . A version of the Oatacomputer

running at NASA/Ames utilizes a Precision Instruments 190

laser-based mass store (known as the Unicon). Thus, the

Datacomput-»! Can fairly be said to be free of dependence on

any particular type of tertiary store. The set of such devi-

ces available today can bt characterized as having very

large storage rapacities (as would be expected) and very

high transfer rates (typically 6 megabits/second), but

unfortunately, very slow access times (5-20 seconds). This

set of characteristics mandates storage strategies which

utilize very large data blocks on the tertiary storage

device so as to minimize searching.

• The Datacomputer's communications equipment consists of

a connection to a Bolt Beranek and Wewman Interface Message

Processor which is in turn connected to the ARPA Network,

- 7 -

MMMIL

i^mmm^mf^^^^m *ww lünvpvww^iaMH^ ■ ■ ■«" ' ■ i^im^mm^mmmmmmmmmm

I
u
u
u

Ü

LI
LI

111
Ü

0
D
0
;:

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

plus a few low speed ports for the connection of local ter-

minals to the PDP-10. The ARPANET connection is the Datacom-

puter 's only channel to the outside world. All Datacomputer

usage consists of messages and data passed back and forth

through this port. Nodes in the ARPANET are connected by

50,000 bit/second phor.e lines, so the combined traffic of

all concurrent Datacomputer users cannot exceed this trans-

fer rate (except for the special case of usage from another

host connected to the same IMP; see section 7.3). The low-

speed lines are used by the system's developers and main-

tainers for communicating directly with TENEX. Since the

Datacomputer never deals with these terminals directly, they

will not be discussed in the remainder of this report,

except in the section on hardware acquisition.

The input/output equipment on the CCA Datacomputer

includes the usual array of peripherals - paper tape read-

er/punch, four JECtape drives (DECtape is a small, low capa-

city but extremely high reliability nagnetic tape device

used at CCA primarily for creating and re-loading the TENEX

operating system), a line printer, and a 7-track, 800 bits-

per-inch magnetic tape drive. The tape device is used for

back up with the TENEX and Datacomputer disc systems to

guard against the possibility of a catastrophic system fail-

ure causing the permanent loss of data.

- 8 -

wummrmmmmmm lumf^^mmmm* ' "■'«»"■■»■■«■»n. im ,... ., i.«... . i,.» "

u

IJ

U

U

U

u
u

I
D

D
u

1

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

2.3 The Primary Operating System - TENEX

The second level in the Datacomputer's functional hier-

archy is the TENEX operating system. TENEX is a fairly

sophisticated system written at Bolt, Beranek, and Newman

for the PDP-10 beginning in 1969. Its intellectual prede-

cessors include the DEC PDP-1 system designed at BBN, the

Berkeley system for the SDS 940, CTSS and Multics from MIT,

and the DEC 10/50 monitor for the PDP-10.

In the late 60's and early 70's, the PDP-10 seemed the

most cost-effective system for small to medium scale scien-

tific and research computing. It was especially popular in

the ARPA community, and TENEX was conceived, at least in

part, to meet the needs of that community. When CCA was

looking for a machine on which to implement the Datacomputer

concept, the TENEX, PDP-10 combination was quite attractive,

and waö therefore chosen as the Datacomputer base.

TENEX was designed primarily to support interactive

time-sharing, with large LISP applications given special

consideration by the system designers. In addition to pro-

viding traditional operating system functions such as sched-

uling and allocation of system resources, TENEX provides two

separate but related abstractions which are especially

useful in implementing systems such as the Datacomputer.

They are: multiple virtual machines (limited to 256K words

- 9 -

wmm mm*

i mi, w™ .i i . mi,. i im«., i,,i a.ii.ui.iii.«iiiiiuiiiiunaii«i, iijuiiniiMiwjmMi i ■ «wi»«ww>wf(iw»|pmpm"'S'"««"W"i^»V^'l"111 « .«1 iwilji," i«" < w^- i ■ IMJ ■■ n , JJI|

U Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

each by hardware addressing capabilites), and a powerful and

flexible file system which includes the PDP-10's

input/output devices as special files.

2.3.1 The TENEX Virtual Machine

A user program (such as the Datacomputer) running in

TENEX may behave as if it were executing on a PDP-10 pro-

cessor with 256K words of primary store and an extended

instruction set which performs such high-level functions as

file and memory management and communication with other pro-

cesses. The extended instruction set may be utilized via

the JSYS instruction, which passes control to the TENEX mon-

itor. Normal hardware interrupts are not available to user

processes, but simulated interrupts are provided by the sys-

tem to {Militate I/O handling and inter-process communica-

tion.

A user's job may consist of several such processes

(known in TENEX jargon as "forks") and the Datacomputer is

in fact so structured. Processes of the same job, while

dealt with separately by the TENL'X scheduler, enjoy a spe-

cial relationship with one another, and may inter-

communicate much more freely than non-related processes.

Each process has an address space of 512 pages; each

page contains 512 words. As in other virtual memory systems,

only those pages actually being referenced by the process

- 10 -

■ mm^Mtumm^^t^ mvmvnmf^- i w wi«n wp»iIBPP "" ■ >■■■«■»• ■" " ■ ——'

u
0
u
r]

Li

Ü

il
I
::

.,

0

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

: \

"

need actually reside in primary store. Those pages which are

part of the process' address space buv which are not cur-

rently being referenced are kept on secondary storage devi-

ces. The BBN Pager, mentioned in section 2.2, is responsible

for the translation of virtual addresses (addresses in the

process' virtual address space) into physical addresses in

the primary store. When the word referenced by a virtual

address is not found in primary"store, its containing page

must be brought in from the secondary store. The pager noti-

fies the TENEX monitor, through a hardware fault, and the

monitor (software) takes over the task of locating and pro-

viding the requested page to the process. First, a page of

physical storage which has not been recently refrenced is

located, and its current contents are saved if need be.

Next, the newly needed page is read into the slot thus pro-

vided. Finally, all relevant page tables and secondary stor-

age maps are brought up to date, and the TENEX scheduler is

notified that the process which intially caused the page

fault may be run again. This entire series of events takes

place with no explicit help or knowledge from the process

whose page is missing. Thus, no special programming steps

need be taken by the designer of the user process, except

for a general n^ed to localize program and data references

in order to minimize the (expensive) page faulting procedure

just described.

- 11 -

*~~.

ntwi w*mm^*jimm?mimmß**mffmr^'r**m -~-^-~— mmmw^*> < ■ ■ ■ -- ■

i
Ü

Ü

I
u
I
Ü

D

.

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
7uly 31, 1975

2.3.2 The TENEX File System

The second TENEX provided abstraction of great useful-

ness to the Datacomputer is the TENEX file system, and in

particular, its interaction with the TENEX virtual store

described above. The file system of TENEX provides the user

with a uniform view of devices connected to the PDP-10, and

with a convenient approach to naming and accessing data

stored on or transferred by those devic s.

2.3.2.1 File Naming

The file system from a static viewpoint provides a

multi-part name for each file, including the device the file

is associated with, a directory name on the device, a unique

identifier assigned by the user as the file's simple name,

an extension identifying the intended use of the file, and

an integer which indicates the version of the file. As files

are opened by user processes, they are assigned small inte-

gers called Job File Numbers or JFNs with which future

references are made.

Since the name of the device on which a file resides is

part of the file's name as given by the user, no special

provisions need be made by user processes for dealing with

unusual devices. Of course, not all operations are applica-

ble to all devices. (There's really no way to read data from

a line printer.)

- 12 -

'■**•

■'" j" '~*mmm!*»***mmi' ' vmmmm>i*mmmm9mKmmmrmKiitevmmmr*m

Semi-Annual Technical Report Jatcoraputer Project
U Computer Corporation of America July 31, 1975

2.3.2.2 Byte-Oriented File Access

There are two distinct approachs to accessing files on

TENEX. (Actually, this is an artifice. The TENE.V monitor

Ü

Ü

D
0

Li

D
::

-

L_

uses the same internal mechanism for both access modes.)

The first view allows (requires) the user process to access

the file as a stream of data bytes. The bytes vary in length

from 1 to 36 bits. In general, access ir, sequential, but

with some devices, it is possible to rese'; the current loca-

tion of the "next byte" in the data stream. This access mode

is the on^y one available for I/O devices such as terminals,

printers, and paper tape handlers. With storage devices

such as disks, tapes, and TBMs, it is simulated by the moni-

tor which reads blocks of data from the device and returns

bytes from the blocks as required.

2.3.2.3 File/Process Address Space Sharing

The second file access method, and the important one

from the Datacomputer's viewpoint, views the file as an

ordered collection of 512 vord pages. Special JSYS routines

in TENEX allow these pages to be mapped into arbitrary loca-

tions in the pr cess's 512 slot address space. When this

mapping is performed, the page of the file and the page of

the virtual address space become indistinguishable; the two

entities (file and process) are actually sharing the page,

and changes made by the process to the page are immediately

- 13 -

|W,W"*l',^!™iWWI*P^PPI»»iiWWI""»',WWi«wnwww^i?w»^««|l^#p«p«rw«»— ..i i><.<mi..i.iiuiai|iiimpnHnw*^w«iiiiv(1.1 UB.I.I m i.i^mmrw^nr-

Ü

D
D
0
D
0
D
D

Ü

Seni-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

available in the file. (The file is strictly passive. It is

an object, not an actor, and cannot modify its contents.)

Under .rules carefully constructed to eliminate undesir-

able conflicts, several processes may map the same page into

their address spaces. This results in sharing not only the

logical page but also the physical memory in which it

resides, thus ensuring that changes made to the page are

immediately available to all processes which have it mapped

in. It is possible to prevent sharing of file pages (on a

per-file rather than a per-page basis) at file opening time,

U thus insuring the consistency of e data for the duration

of a process' use of it. It is also possible to specify that

a private copy of a page be made for any process which

writes it, with no merging rfhen the file is closed. This is

especially useful during debugging and for programs which

;. include modifiable data bases.

2.3.3 TENEX Modificatirns for the Datacomputer
m -

The virtual machine provided by TENEX - a PDP-10 arith-
• ■

metic processor with full memory capabilities and file/pro-

cess address space integration - has proved to be quite hos-

pitable to Datacomputer development. However, a few minor

1 changes uo the TENEX mon'tor have been necessary to of imize

the Datacomputer's performance. Fitst, routines to support

the Caloomp 230 disk drives wer«» added; and second, the

- 14 -

'-"~~'"T""'""""*'F'"w»r*™»'"*~wrT™p»w»»www«wip*pp^^

y

D

..

D
Ö

D

o
!:

i

Semi-Annual Technical Report
Computer Corporation of America

Datromputer Project
July 31, 1975

scheduler was modified to give special considerations to the

resource utilization patterns of the Datacomputer. Addition-

al device handling code will be necessary when the TBM is

integrated into the system.

2.4 The Pseudo Operating System - Services

The preceeding two levels of the Datacoir.puter system

were not products of the development effort being discussed.

They are described here because an understanding of their

functions and capabilities is important to underst?nding the

functions and capabilities of the two outer layers of the

system - Services and the Request Handler.

These two levels constitute what could reasonably be

called the "Datacomputer proper", and are the primary output

of the Datacomputer project. They are conceptually and func-

tionally separate - to the point of having separate staffs.

This section discusses the Services programs (hereafter

known interchangably, and in accordance with time-honored

tradition, as SV).

SV functions as a pseudo operating system for the Data-

computer. It provides the basic functions of a traditional

operating system in a form which is maximally convenient for

the construction of a user-level Datacomputer interface (of

which the current Request Handler is but one example). In

particular, SV provides a specialized file system, stream

- 15 -

Ik ■■■■ ».MM MMMMMMMMIML-MI

n^.... p.. w..... I.. iiM.ipiiiimwmrn^iipini.. —~~' i i ..i.miivpmiMi ■l<ll.lllllllliH|PF^H^ M Mi..». -^ ■ »"l-"" *" l MUBl^JH

D

1J

Semi-Annual Technical Report Datcor.puter Project
Computer Corporation of Aiuerica July 31, 1975

oriented input/output facilities, and a set of scheduling/-

monitor functions.

Access to SV functions for the Request Handler is via a

special instruction known as "SVCALL". SVCALL's exist to

manipulate the state of Datacomputer files including reading

and writing pages from them; to perform input and output

over *-he Datacomputer's ARPANET connections, and to handle

special error conditions.

One useful side-effect of the Datacomputer's structure

is in the area of transportability. While the fact that the

Datacomputer is encoded entirely in Ka^ro-10 assembly lan-

guage militates against direct transportability, the exis-

tence of a cl2an, well-designed operating system interface

(SV) means that very little re-desijn of user-level routines

need be done. The logical structure can remain the same even

though the routines must be re-coded into the language of

the new host. Such an undertaking would still be an very

large effort, but it would be considerably easier than

starting from scratch.

2.4.1 The SV File System

The primary function of SV is to provide a ccnvenient

interface to the data storage facilities of the Datacompu-

ter: the tertiary store and the staging device. A Datacom-

puter file as seen by the Request Handler programmer con-

- 1« -

■

■■ ' '■ '"""I '■ .,.,.«>< i »-v.. II 1 Bll. ■■^■1 11* HI«. HIUIIHl iiiiii|i>m«!PUi.WiuaPi|.9np^M)WP i)ii,iini|niiirr!P»^p»(wn^^w^» "'■ ■' ■"H

. * »^ >

Ü

y
u

u

u

0
.

:

n

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

sists of an arbitrary number of "sections" (or sub-files),

each of which is an ordered set of pages. (For convenience,

SV pages are the same size as TENEX pages - 512 36 bit

words.)

2.4.1.1 The Directory System

The Datacomput^v file system may be thought of as a

tree-structured hierarchy. At the top of the tree is a node

whose conventional nam«s is "%TOP". There are two types of

nodes in the directory system - terminal and non-terminal.

Terminal nodes (files) contain only data, and non-terminal

nodes directories) contain other nodes which exist at a

lower level in the tree. Node creation is independent of

the intended use of the node. In other words, a node in the

tree is created, then at a later time it is specified

whether it is terminal (a file) or non-terminal (a direc-

tory) . Levels of the hierarchy are specified as a list of

naaies connected by periods, such as "%TOP.DFTP.CCA". In the

fcÄe.!'.'le, %TOP and DFTP are non-terminal nodes, and CCA may

be either terminal or non-terminal (in the example, not

enough context is present to determine which).

In addition to mrintaining the directory hierarchy, the

directory system provided protection for contents of nodes,

whether other nodes or data. This protection takes the form

of a set of "privilege tuples" associated with each node. A

- 17 -

- -

'"""«'''"'"'■'•''"''■•»""'""»''•'■»«iWtWB^ip^^ itmmiKißiimi^mvmmmm*mm***~***

ü
u
0

ü
0
ü
11

0
0
D

Semi-Annual Technical Report Datcoraputer Project
Computer Corporation of America July 31, 1975

privilege tuple describes two things; the set of privileges

allowed (or denied) to the user accessing the node, and the

set of conditions which must hold before the node may b*

accessed at all (via this privilege tuple).

U
Just to give the flavor of privilege tuple application,

one might specify that for a particular node, a user named

"S'TTH" may login to the node and create new nodes under it,

but only if SMITH is connected to the Datacomputer from

socket number 1000001 on ARPANET host number 21, and only if

SMITH knows that the password assigned to the particular

privilege tuple is "WASHINGTON". For a full discussion of

privilege tuples, please refer to the latest Datalanguage

manual.

This external view of the Datacomputer's file system -

a tree-structured hierarchy with multiple protection classes

enforced on each node in the tree - is dealt with transpar-
- -

ently by the Request Handler. This means that the structure

seen by, and the functions available to the ultimate Data-

computer user are essentially the same as those provided by

Services to the Request Handler.

2.4.1.2 Access to Dataccmputer Files

As mentioned above, a Datacomputer file is stored as an

arbitrary number of sections, each of which is broken into

512 word blocks called pages. When the Request Handler

- 18 -

MHM^MMMMMM

1 P ■■" Li..i..ii.i »I. innaiiiiiijiii IIWIII iuim-"<u"w wmmmm^^m^ mmmmm

u Semi-Annual Technical Report
Coniputer Corporation of America

Datcomputer Project
July 31, 1975

wishes to access some psge of a Datacomputer file, the fol-

lowing sequence of events must take place:

1) The file is opened. To open a file, RH supplies SV

with the string representing the file's pathname

in the Datacomputer tile system (along with any

needed passwords). SV determines that the current

user is allowed to access -the file in the manner

requested (and the file exists), then returns a

small integer, known as a Relative rile Number or

RFN. The RFN is the handle used by RH in all

future references to the file until it is closed,

at which time the RFN becomes invalid.

2) A buffer is allocated in the user process's

address space. Buffers are managed by SV, but

their allocation, freeing, and use is under the

control of RH. A buffer is exactly the same size

as a Datacomputer file page (and of a TENEX page).

The buffer is identified by yet another small

integer returned by SV.

3) If the page is being read (data already exists and

is being referenced), an SVCALL known as PGRD is

executed. This takes the RFN of the file, the sec-

tion number, the page number within the section,

and the buffer number into which the page is to be

- 19 -

w*~~^~™^mmmmmmmmmmmiimKl**WW'**'i''m^

u

Ü

Ü

0
u
Ü

:

u
Ö

D
n

•»*>

Semi-Annual Technical Report Datcoraputer Project
Computer Corporation of America July 31, 1975

read as inputs. After the call, the page is avail-

able in the buffer.

4) If the page is being created, data is first

entered into the buffer by the Request Handler,

then the page is written "-o the file by the SVCALL

PGWR. Arguments are the same as with PGRD.

5) If the page is being modified, the sequence is

PGRD, modify, PGWR.

6) When the Request Handler is through with the buf-

fer and the file, the buffer is released by an

explicit SVCALL, and the file is closed.

There are some problems with this file access strategy,

primarily as a result of the fact that data pages lose their

identity when in buffers. Since SV is perfectly happy to

read the same page into two or more different buffers con-

currently, it is possible for the Request Handler to unwit-

tingly make two copies of a page; modify them both in the

buffers; then write both back to the file, making the con-

tents of the page at best L-certain. This case actually

arose during the develooment of Datacomputer Version 1, and

a non-trivial amount of time was spent locating and correc-

ting the undesirable interaction.

- 20 -

——'—-*———-'——'—- —

m." luiimmjvnRppiMMpmwNiMi ii. i 11 iwiimjiiiiofnBMivfOTpHF'^u. «■■ i ni.pp ■z*mme*mmmiimmmmmmm*mmi*mm^**

fl

o
D

'

Ö
0 Serai-Annual Technical Report Datcomputer Project

Computer Corporation of America July 31, 1975

2.4.2 The SV Input/Output System and Monitor

The input/output and monitor facilities provided by

Services are fairly rudimentary when compared with the

directory system. Input/output consists primarily of a set

of connections to the ARPANET, with the ability to read and

U write buffers of data to/from a given connection. A special

set of SVCALL's are provided for communication with the

Datacomputer operator's console. The operator is consulted

before particularly large reguests are executed for user

jobs, and certain kinds of messages -bout the state of the

Datacomputer are routed there.

The Services monitor provides no particular facilities

of its own, but is responsible for the creation/destruction

of TENEX forks which represent particular Datacomputer sub-

jobs. As users contact the Datacoraputer via the network,

they are assigned to a particular sub-job by the master

process known as "Job 0", which is just like any other Data-

computer process, except it has the monitor code enabled.

2.5 The User's Level - RH

The "outermost" level of the Datacoraputer is known as

the Reguest Handler. RH is in some sense an application pro-

gram, since it is posssible for a reasonably naive user to

interact directly with it, via a specialized data-manageraent

language ^nown as "Datalanguage". It would not be unreason-

- 21 -

* - - -

IPPWP^"^— ■'|"|"|>||" iii.Li,i iiiiiim*WP^>n^nM^p^JwiiMwi.iiiui,iMi«piigiiu ■■'»*»!•'' nin» .1 II.,W

Ü

D
D
U

:.

:.

D
;:

I n

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

able to consider Datalanguage as the Datacomputer's order

code.

Datalanguage ?*nd ine Datacomput .r were designed to be

used by PROGRAMS running in other hosts on the network, and

some of their characteristics which seem to contradict prin-

ciples of good human engineering are a result of this

assumption. Nonetheless, since all control interactions with

the Datacomputer are expressed as strings of human-parsable

ASCII characters, it is possible (and in fact the norm at

CCA) for a human user sitting at a terminal which is capable

of generating the ASCII control characters tc interact

directly and successfully with the Datacomputer. To avoid

the <»nthropomorphization which usually creeps into descrip-

tions of machine-machine interactions, this section is writ-

ten aö if the Datacomputer user were a real human being at a

terminal. Tne reader is cautioned to bear in mind that this

mode of use is decidedly secondary; that the Datacomputer

is primarily a resource for machines and their programs.

2.5.1 User-Datacomputer Interactions

The Datacomputer maintains one or more input/output

channels for the user. The- are called "ports". All Data-

language interactions flow over a particular port known as

the "default port" or the "Datalanguage port". This port is

the connection established when the user first contacts the

- 22 -

USttm^mmmam^mm ■M

iwwn .Mi ijiiiiiuiuiipnjiiwigiiiL ii iiiunii.i^nnan^iPi^Mmm^iiiuii'iin ■ <**,» i"ui IIII*U nut. H., m ii\ii[mmmmmm^*m^^''*mm*r*''**'■■" -T(muu<Mm!vw>i<iiim»

u
D
U
D

.;

Ö

Ü

D
D
::

Semi-Annual Technical Report Datcoraputer Project
Computer Corporation of America July 31, 1975

Datacomputer from the ARPANET. Data may flow over the

default port or over auxiliary ports which are created by

Datalanguage statements as the session progresses. It it

preferable to use auxiliary ports for data for two reasons:

first, only ASCII data may pass through the default port;

and second, even though the data being passed is ASCII,

great care must be taken to insure that it contains no char-

acters which are treated specially when passed through the

default port.

Datalanguage statements fall into two categories - com-

mands and requests. In general, commands control the state

of the user's Datacomputer process; open and close files,

create nodes, modify privilege tuples, etc. Requests refer

directly to the contents of files. A large pa^t of Data-

language is devoted to the detailed description of the con-

tents of files, and the Request Handler makf:s extensive use

of such descriptions in planning its actions.

2.5.2 Request Hand1er Structure

When the user first connects to the Datacomputer, Ser-

vices initializes a new Datacomputer process, then passes

control to the Request Handler. RH does some initialization

of its own, then asks SV for the next line of input from the

Datalanguage port. If the input line is a command, it is

executed immediately. Requests are compiled, then executed.

- 23 -

^ :==.

J' ■ ■

—

it

Semi-Annual Technical Repct Datcomputer Project
Computer Corporation of America July 31, 1975

There is no provision for storing requests in their compiled

form. There are two reasons for this strategy: first, there

is an assumption that two requests that are exactly alike

are very rare indeed; second, the compilation time is trivi-

al when compared with the execution time of requests on

really large files.

..

:.

2.5.2.1 The RH Compiler

The Request Handlet 's compiler is invoked for most

requests. (A special subset of easy-to-handle requests are

interpreted by a special module known as "slurp".) The com-

piler consists of three parts.

u
1) The first phase of c »npilation is handled by a

routine known as the "pre-compiler". The pre-

compiler takes the request as received from the

user, does validity/syntax checking, and produces

a new representation of the request known as

"intermediate language". Intermediate language

consists of a set Of functions which are an

abstract description of the entire set of opera-

tions which are legal on Datacomputer data. These

functions are essentially the low-level machine

language of the Datacomputer. They represent ele-

mentary operations sucv .. "move an item from con-

tainer 1 to container 2" with appropriate ancil-

- 24 -

www^ i "-■'■

y

;:

..

Serai-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

lary information such as the type and location of

containers 1 and 2. Most of the "smartness" of the

Request Handler lies in the pre-compiler. It is

completely .esponsible for the syntactic and

semantic interpretation of user requests (but not

their execution).

2) After the pre-compiler has abstracted and simpli-

fied the request, the intermediate language gener-

ated, and descriptions of the real files which are

named in the request are fed to the rest of the

compiler. This section it responsible fcr genera-

ting the instructions for actually moving data

from one file (or port) to another under the con-

trol of the request. The output of this phase of

the compiler is a data structure which contains

all the messy loops, skips, and such for plowing

through and pulling the data specified in the

format requested from the file. The descriptions

of each of these operations are called "tuples",

although the exact referent of this term is some-

what ambiguous, as tuples are also the routines

which interpret the data structures produced by

the compiler.

3) Finally, the routines which actually execute the

request on the data are, in some sense, part of

- 25 -

-- -- - . ,

fp* ^■WP WIMWll ,^ , .^„„^ ii. i.iia ■ im nn I«IIIII •MM.IIIUIIUIJpnq "*P

u
11

:

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Prefect
July 31, 1975

the compiler. Many of the tuples have distinct

sub-routines which are responsible for their exe-

cution, and those routines constitute both the

run-time environment and part of the compile -time

data base of the compiler. L'ocause of the multi-

tude of data-types, byte sizes, etc. allowed by

the Datacomputer, each tuple has many "modes",

which are identified by bits in the data struc-

ture. For any given request, a partieulai set of

modes is used, and a particular subset of the

tuple code is executed. The last phase of the

compiler walks through the tuple list that defines

the request, and extracts the instructions which

perform the tuple functions ar constrained by the

active mode bits in the tuples, producing the

final "compiled request", which is executed with

the real data.

2.5.2.2 Large File Considerations

For purposes of efficiency and implementation ease,

files are sometimes broken down into smaller collections of

data at various levels. Sub-groups at the -mly level cur-

rently in use are called "hunks", and are not used until

file size approaches 20,000 records. In the future, more

levels of sub-setting may be used internally.

- 26 -

'*^iqmmm^^mmm^m*mmnmm*m'irm**m*mGfiimig*iimmß ' IMI i IWWB-SUP^IIPPPW^ITOUMIIH inni ■]„»w.iiiw™w»wgii. ■ n/in.w—niMppni^Bnpww

. i

u

.

.

D

Semi-Annual Technical Report-
Computer Corporation of America

Datacomputer Usage

Datcomputer Project
July 31, 1975

During the reporting period, the experiment'1 Datacom-

puter has been used by a quite diverse user population, with

generally satisfactory results. The User Services group in

the Datacomputer staff is responsible for interacting with

such users, providing technical support, and maintaining

various user-level programs which run the Datacomputer from

remote network hosts.

3.1 Version 0/11 Usage Report

The 0/11 Datacomputer was the last experimental version

of the system. It provided service to all Datacomputer users

during the first half of calendar 1975. The following

groups used significant amounts of Datacomputer time during

the reporting period.

1) The Dynamic Modeling Group at MIT uses the Data-

computer for archival storage of their network

host availability surveys. This system several

times a day interrogates all ARPANET hosts, and

notes whether they are currently serving remote

users on the network.

2) A group at Harvard University used the Datacompu-

ter for storing seldom-used files from their PDP-

10 system. This use of the Datacomputer was

- 27 -

mmM

—-—'^ii*m^^^^*^m^^*^'wmm>m* ipp^^f«mHipjimwtMP<^ 1 ! i i u i vmmmmmmmmmm

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

through a proram called "Datacomputer File Trans-

fer Protocol", or DFTP for short.

3) A group at ETAC continues to pi n for storing a

very large data base of weather station reports on

the Datacomputer when the TBM becomes available.

Trial use of the Datacomputer has been made to

test file formats and to attempt to increase

understanding of the type of problems to expect

when using such large data bases.

4) CCA uses the Datacomputer for archival file stor-

age in preference to DECtape or large magnetic

tapes.

5) The seismic data base application discussed in

Section 7 has been making trial use of the Data-

computer. Like the weather people, most use so far

has been to try out file formats, discover whether

the Datacomputer has all the features needed to

support the application, and generally gain famil-

iarity witht the system.

6) Bolt Beranek and Newman is using the Datacomputer

to stcre network-related information. The data is

related to the IMP sub-network.

'

- 28 -

■MM mmmgmmmmmmmam

wm*ii^mmp^mmmmmmmmirmmmmmmm*m*mmmm''1 ' u i" ■ .mm^mimm^mwmmmmiimm'i^'^^^^mmmmm'm^mm

Q

..

;.

:

::

i
1

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

7) Several other network sites have moved towards

making use of the Datacomputer as a large pseudo-

on-line file storage facility, like Harvard is

doing now. They include ISI, Sumex, BBN, Ames,

Rutgers, and MIT (both the PDP-10 systems and Mul-

tics).

3.2 Planning for Version 1

The User Services staff planned, during the reporting

period, for a smooth transition to Version 1 of the Datacom-

puter. The ateas of particular concern included generating

schedules of Datacomputer availability, producing a Version

1 Datacomputer reference card, and deciding how to handle

user requests for information and aid.

There is potential conflict in the fact that a few

us(;rs o£ the Datacomputer are quite large and quite impor-

tart, while many others are relatively Insignificant in

terms of resources consumed and impact on system design. The

problems occur because the smaller users often require just

as much help with their applications as do the large and

important users. As the Datacomputer moves towards becoming

a service rather than an experimental facility, this problem

must be addressed, and a plan for dealing with all sorts and

sizes of users devised.

- 29 -

■WM^HM^^i

fgnmr^" MUW.'"PI.«""I."Ji,.HIi mmm?,** •m-*m'»m<f" «mmmm "R.ii>wiP>lww^niWV*«PW5W"»""lW»P«iPI»^^PPP^WIPPI»lPW"P

D

..

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

3.3 New User Contact

During the reporting period, many new potential users

were informed of the Datacomputer's existence, and their

problems were discussed in the context of a Datacomputer

solution. Getting in touch with DoD people who mi fht use/-

need the Datacomputer is an important function of the User

Services staff, and must be pursued with vigor in the

future.

0

;:

- 30 -

Mil MMM^Mi - ■

ijkjaiPLi i. ,m •iiinwiuiii.,!«. muu Kummi ,■ jnmiiipMppipmniHipaiipnniuijjii^'ii«iiiwfimiü^vpwipwi Wif» iw .iiiuimnnqppii^iB.Mi. miiip ^pniinRnmiPOTWimi

D
fl

0
0
::

o

Semi-Annual Technical Report
Computer Corporation of America

Software Development

Datcomputer Project
July 31, 1975

As mentioned in section 1, most of the effort in Data-

computer development during the reporting period was concen-

trated on the release of Version 1 to ARPA Network users.

Software development consumed most of the effort, and that

work is presented in this section.

Software development can be broken down into three

broad categories: SV development, HH development, and devel-

opment of support programs running as separate TENEX jobs.

4.1 Services

Bor the Services group, the first half of the calendar

year wa.- primarily a time of feature enhancement; of flesh-

ing out and solidifying what already exists. The SDAX mech-

anism was thought about in great detail and a large part of

the code written. The directory cross-checker was thorough-

ly shaken down ano debugged. Several minor features such as

Temporary File Tiumbers (TFNs) were implemented (ususally as

a result of a srecific need of the RH group).

4.1.1 sr^X

The Special Disk Area Index design, known as SDAX, is

designed to reduce the danaer of undesirable interactions

between multiple users of a single Datacoraputer file. SDAX

essentially takes the Vile man", the mechanism which Servi-

- 31 -

 - _

"""•" ^MpppmpnpNpiWMmi" n«n*lMaiiiainiip«ilifPiHPNi . i > ^■""■""»•-•»■pwpii^ripppp. i IIIIIIIINIMII ..H

ö
0
0
..

y
D
::

::

i

Semi-Annual Technical Report
Computer Corporation of Ame.ica

Datcomputer Project
July 31, 1975

ces employs to remember where file data is actually located

on physical storage, and breaks it out into a chain of maps

which are searched when the current location of a data page

is needed.

The goal of all this is to guarantee that the most up-

to-date copy of a page in the file is always the one

acquired, even though the same page may exist on TBM, on

disk, and in primary store with all versions different.

SDAX is a major contribution to the Datacomputer's

ability to serve as a central repository for large data

bases which are to be updated and referenced by a variety of

different users at different sites. Most of the work of pro-

viding this ability was complete by the end of the reporting

period, although SDAX capabilities are not a feature of the

Version 1 Datacomputer.

4.1.2 Directory Cross Checker

The Datacomputer, like any large, complex computer sys-

tem, is subject to periodic interruptions due to the failure

of computer hardware, software, and commercial power systems

(not to mention operator error...). Whenever an interruption

in opi'a.tion occurs, it is possible that operations were in

proa^ss at the time of the interruption which had tempora-

rily invalidated the integrity of information in the Data-

computer's directory system.

- 32 -

^^mmm ■BBMBM* ■i

■»■IIIRIMPI« jBpniiMii^Mi ■ im i wm^m^mi^^mp^*mmmm~~- im^^^mt^-jmmmmm^mmmmmmmmmmmf

ü
11

n

-•

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

In the interest of recovtring from such problems as

gracefully as possible, the Datacomputer directories provide

a substantial amount of redundant informction about their

structure. This redundancy costs something in storage space

of course, but is crucial if faith in the Datacomputer as a

safe repository of important data is to be justified. This

faith is a necessary and important step on the road to a

Datacomputer network service facility.

The directory cross-checker, which was completed during

the reporting period, makes use of this redundant directory

structure information to reconstruct damaged directories. It

is typically run by Datacomputer operations personnel fol-

lowing a service interruption.

4.1.3 TFN's

During the development of the chaptered file software

discussed in section 4.2.2, it became obvious that some

facility for maintaining large scratch files in the Datacom-

puter was necessary. The mechanism chosen to satisfy this

need is known as the Temporary File Number, or TFN.

A TFN is an SV entity which behaves just like a RFN

when used in file-oriented operations. It is acguired by a

special SVCALL, then used with no special precautions. The

TFN is a much more efficient solution to the problem than

the obvious alternative of creating and opening a dummy

- 33 -

 -^

^^mmmmjimmmimmKm^'^m^wmmmmfmmtmmmmmmmimmmt n MWIITTWW^^^HI.IP»!,. UJJ^BHW—HW—^^WWP^W^W »iwun»1 -^nw

U

u

Semi-'.i.nual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

file, then deleting it at the end of the request (all of

which could be done by the Request Handler), since The TFN

mechanism allows short cuts to be taken in the management of

SV's file status tables, as well as being easiar for RH to

deal with.

4.2 The Request Handler

The Version 1 request handler is lased on that of Ver-

sion 0/11. Re-writing from scratch was not thought necessary

since that was done for major parts of the Request Handler

during Version 0/11 dvelopment, providing ?.n adequate base

for Version 1. Nonetheless, almost all modules of the

Requeue Handler were modified in somo way as part of the

development effort, and many new modules were written.

4.2.1 Restriction Removal/Cleanup

Since the Request Handler is the Datacomputer as seen

by the Dataromputer user, it is especially important that

this interface be as clear, straightforward, and transparent

as possible within the constraints of the system's design

and goals. With this in mind, a great deal of work went into

removing the many special case restrictions which were in

Version 0/11. These restrictions caused requests which

seemed .juit.e similar to the user to behave in completely

different fashion, even to the point of not working at all.

In addition, every attempt was made to assure that such

- 34 -

u

u
u
Ü

u
u

!

ü

ij

hi

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

restrictions did not creep into new code as it was being

written.

The effort to maintain cleanliness and minimize

restrictions was quite successful. In Version 1, requests

which seem reasonable to the user will generally work as

expected, and those which cannot be handled often return

meaningful error messages. (Some improvement in error mes-

sages is definitely needed in the future.)

4.2.2 Chaptered Files and Updating

In Version 0/11 of the Datacomputer, one of the most

glaring restrictions was the inability to modify the values

of containers of variable length. This was especially gall-

ing in view of the fact that variable length conatiners are

typically the best choice in terms of storage efficiency and

ease of data handling where strings of characters (such as

names, address) are involved. With these considerations in

mind, the removal of such restrictions was given high prior-

ity in the development of the Version 1 Datacomputer.

Another feature targeted for inclusion in Version 1 was

the waintainance of ordered files . the Datacomputer. The

intention was to be able to delete and insert records at

arbitrary locations within a file, and to maintain the ori-

ginal ordering of the file across such insertion and dele-

tion operations.

- 35 -

■MMMBMaMMl

u
D
..

D
.

Ö

;:

D
11

j

„

D
D

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

Such ordering is typically maintained by use of one or

more sort keys. A sort key is typically a named field within

a record which takes on a set of unique values. An algorithm

must be available which, given two values for the field will

decide which comes before the other, or that they are iden-

tical. If it is necessary to discriminate between those

recorc. whose primary sort key fields are identical, then

second"-y keys can be set up, ad infinitum. (For example,

we might want to maintain a file sorted by an individial's

last name. If the last names are identical, then sorting is

by first name, then by middle initial.)

These two somewhat separate problems - updating indi-

vidual fields or containers within a record, and maintaining

the logical ordering of the file at the record level - were

seen as highly related and subject to joint solution. The

solution that was ultimately adopted called for "chaptered

files", and "an ordered CAT".

One major concern during the design was that locality

of reference be maximized. If a new record is being added to

a file, it is important that it reside as close as possible

physically to the records with which it is associated. In

particular, with respect to the TBM, it is crucial to mini-

mize the number of blocks of data read. Strategies that

resulc in fragmentation of related data encourage ineffi-

cient use of the TBM, and must be avoided.

- 36 -

- '— - ■ ■

ü
D

:.

::

Q

D
ü
0
::

::

::

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

Both the insert/delete and variable-length update

issues can basically be seen as problems in free-storage

management. Given an initial representation of the data in a

file, space must be found for inserting new data, whether

that data be an entire new record or an old record which no

longer fits where it was initially allocated due to an

increase in the size of one of its sub-containers.

Methods for managing such variable allocation problems

are well Known. Lists of space currently in use and of space

available for use must be kept. Routines must be written to

manage these lists. Extra space must be provided for .it file

creation time in order to allow for growth.

Of course, the file could be treated as a single, large

free storage area with records allocated according to an

algorithm which only takes into account the basic issues

mentioned above. In the case of the Datacomputer, however,

such an approach is not adequate because new or modified

records would likely be allocated far from those to which

they are most highly related, thus destroying the locality

of reference which is so important when dealing with the

TBM. (It should be noted that the relevant block size is

quite large; approximately one million bits, or 28,000

words.) The solution we have adopted is to break the file

into smaller units, which we call chapters. Each chapter is

a complete free storage area in itself, and each contains

records which are (hopefully) closely related.
- 37 -

— - - -

0
D
;.

D
Ü

[1

:.

.:

-

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, \91Z

r

When the free space in a chapter is exhausted, all sub-

sequent calls for more space in it are directed to a speci-

fic overflow chapter. Thus, some loss of locality results,

but it is kept to a minimum. (In practice, several original

chapters share a common overflow chapter, and provisions for

chaining additional overflow chapters together are made for

the ca^e in which the first overflow chapter is filled.)

A secondary goal of a chaptering scheme is to help in

localizing searches based on the sort key. It was planned to

maintain an index of chapters which would contain the range

of values for the primary sort key which were found in each

chapter. This would facilitate searches based on the value

of the primary sort key, and would be a corollary to the

Datalanguage inversions. This strategy is also known as the

"ISAM Index" scheme.

4.2.2.1 The Container Address Table

As records are added, deleted, and moved within the

file, its physical ordering moves further and further from

its logical ordering. Of course, it would be possible to

always sort the file when records are inserted, deleted, or

modified into a new location. This approach, while fine for

very small files, becomes physically impossible as file

sizes approach a trillion bits. (Just to read a trillion

bits into cote at six million bits/second, the TBM's maximum

- 38 -

mmmm Hill

0
..

:.

:

u
u
0
::

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

transfer rate, requires almost two days.) We have therefore

chosen to store the ordering information outside the data

base in an auxiliary structure known as the Container

Address Table, or CAT.

It is possible to have a CAT for any list in a Data-

language file descripticn- The CAT provides a quick access

to list elements and is primarily a tool for increasing

efficiency at run-time. For example, to obtain the nth ele-

ment of a list of variable-length, delimited strings with no

CAT would require readinq through the first n-1 elements,

searching for deimiters. If the same list had a CAT,

obtaining the nth element would require only loading a

pointer from the nth CAT slot.

The outermost list is treated specially, since each

list element is in reality a record from the file. Chaptered

files have CAT's automatically, but for non-chaptered files

(also known as "pure base" files) the CAT option must be

specified explicitly. If records contain varying length data

?nd there is no CAT, then the file must be parsed by the

Request Handler, record by record, until the desired record

is obtained.

4.2.2.2 Problems with Original Desiin

The design specified above is basically a sound

approach to the problems it attempts to solve. Difficulties,

- 39 -

ii .^„^^^^^^

1 ■ll1 «w«pmm|

Seroi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, Jr.75

Ü

Ü

..

-

however, arose during the detailed implementation design.

The basic difficulty arose from the fact that sort keys are

not provided for by the Version 1 Datacomputer, and adding

such a capability was beyond the scope of the chaptered filo

/ updating effort. /. generalized sort package is a desirable

and scheduled feature for a future Datacompuv.er, but is not

currently available.

The ordered file routines need some kind of handle on a

new record in order to determine where in the file to insert

it. This handle is normally the sort key, but with no sort

keys, some other strategy is needed. Some argued for what

became known as "magically ordered" files; the order to be

determined as the order in which records are read into the

datacoraputer. Inserting in such a file would require exhaus-

tively specifying the location into which the new record (or

set of records) would gc, then after the insertion the

result would become the new "magic" order of the file.

This scheme seemed undesirable since there is no way

for the system or the user to do validity checking on the

files thus created. Of course, the user would typically have

some sort key in mind when creating the file, but there

would be no way for the Datacomputer to find out what that

key was.

- 40 -

■ - - —-- ■•■-■

^•""wwpww^wPTO" mm^mm^m^^mm^ u,. ..wwaii .1... iiiia«pip«aaippMCPrfHPnHa««npm 1 u...Miiii«ii.pjjiiiwiii 1 1

D

1.1

:.

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

The decision finally made was not to implement ordered

filts in the Version 1 Datacomputer. Appending to and

deleting from chaptered files will be possible, but no

attempt at remembering the order of such appends/deletes is

made. This scheme handles almost all users problems, and is

considerably easier to implement than the original design.

Full variable length updating is, of course, provided

in the final design for Version 1. The additional niceties

of ordered files with full inserting ap..J deleting will have

to await the arrival of sorting facilities and sort key spe-

cification in the Datacomputer.

4.2.3 New Data Types

The Datacomputer's role as a central transfer point for

data in a heterogenous network gives it the rather unusual

requirement of being able to deal with almost any data type

and machine representation of data. For example, strings can

be represented in ASCII, EBCDIC, or BCD with various byte

sizes. (Limitations in the TENEX network software restrict

the byte sizes of data transmitted through ports to or from

the ARPANET.)

In addition to representation of different data types,

a set of conversions from one type to another must be avail-

able to that assignment, arighmetic, and comparison opera-

tions across data types are possible. Problems are some-

- 41 -

«MUM.

■""^ . *ifm<ii.ii^mmmmw*^m-**^m'mmmmmmmmm pwi i in i ..in uiLHiiui^a^^n rwmimm ——-

:

u

. .

:

Semi-Annual Technical Report
Computer Corporation of America

Datcoraputer Project
July 31, 1975

times encountered with such conversions. For example, the

one's complement integer -0 (minus zero) has no representa-

tion in two's complement form. Liewise, it's not clear what

collating sequence is appropriate when comparing ASCII and

EBCDIC strings.

Almost all interesting data types and their conversions

will be available in the Version 1 Datacomputer. The areas

in which work is sMll needed are the many possible machine

representations of floating point numbers and data elements

with byte sizes greater than 36 bits.

4.2.4 List Command Imorovements

The Datacomputer LIST command provides the user with

information about files and directories on the Datacomputer.

By specifying the appropriate options, the user can cause

information about a single file or a group of files to be

transmitted through the default port.

For example, the user might request a catalog of the

names of nodes immediately contained in the directory to

which he is logged in. Alternatively, the amount of storage

assigned to a particular file might be requested.

During the reporting period, the LIST command was com-

pletely re-written. It now has much more powerful facilities

for specifying file groups for output and a more complete

set of options.

- 42 -

■'■ •■ iiiiiiiii II Bi^p^wiraw i im» m nK^rmmm*immm^m*^*mmmmimmm^mr*~~*mmmmm

I:

D

,

,.

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

4.3 Support Programs

As previously discussed, the Dat^computer serves pri-

marily as a resource ror programs and software systems

residing on various ARPANET hosts. With this primary goal,

its design is not optimized for direct human use. A very

large number of software interfaces to the Datacomputer will

ultimately exist, running on a variety of host machines and

with varying degrees of user awareness of the Datacomputpr's

existence.

In the short run, one program (subroutine) level and

two user (terminal) level interfices to the Datacomputer

system are supported by CCA for use from TENEX hosts o the

network. These programs allow users at TENEX sites to make

elementary use of the Datacomputer's features.

During the period covered by this report, these pro-

grams were upgraded to work with the Version 1 Datacomputer.

Features were addod in some cases; in others, only compati-

bility changes were nade.

4.3.1 DCSUBR

DCSUBR is a package of TENEX subroutines which user-

level programs Co. call to manage their interactions with

the Datacomputer (via the network,).

- 43 -

a^M

P*. tji « ii i[.<mmiimvwimv.wmmmmmmm^m^^mmmmmmmil^w-' < 11 ^^^mmmmm^^mmmmmmmmmmmmmm mmnm**ipmv^m**m

D

,

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

DCSUBR is used by the RDC program as well as various

other small applications running on TENEX hosts around the

network.

LI 4.3.2 RDC

1 1

RDC is a program to Run the Datacomputer for a user at

a terminal. Its basic function is to pass lines back and

forth between the user and the Datacomputer, providing some

(variable) screening of error/status messages on output, and

standard type-in editing functions (such as character and

line de'.ete) on input.

RDC provides a very raw view of the Datacomputer. Pro-

bably, most real "users" will never need such a view, and

RDC (and similar programs for other host systems) will exist

primarily as a debugging and application development tool.

4.3.3 DFTP

u
The Datacomputer File Transfer Program, more popularly

known as DFTP, provides the user with a simple off-line

storage facility. This facility behaves much as if it were a

large, slow tape drive with the capability of storing lots

of bits and of maintaining a directory of file names availa-

ble on the tape.

Files are stored on the Datacomputer (under DFTP) by

explicit "put" operations, and must be retrieved by explicit

- 44 -

tmmammm

—-». "■ niJW ^m^m^m-ivmrnrnt i ■in« •■imai UIII>II — n <m,,,«mm< •»——

; D
D

:.

:

..

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

"gets" before they are again available for use. This style

of use is most appropriate for large, seldom-used files when

disc space on the host is either scarce or expensive.

DFTP is a very elementary use of the Datacomputer,

since none of the internal file structuring capabilities of

Datalanguage are used. It is essentially a practical though

trivial application of the Datacomputer.

i
1

- 45 -

 ii ■ ■ ■

■PHKWwo.v .lim l.'IWW.M IIP1 ■■■»«« ■W»iWWWpJW^W>W!«WWW»"SI|WW"W^PPiPPPI»*W* rw . ■■ " Wim , mil

u
Q

D

:

L!
f

D

..

'

Semi-Annual Technical Report
Computer Corporation of America

Documentation

Datcomputer Project
July 31, 1975

As the Datcomputer moves towards becoming a network

service facility, the quality and tae style of its documen-

tation become increasingly important. First, end-user

(external) documentation is especially crucial as the user

population reaches the point beyond which individual hand-

holding and documentation by phone call become impossible.

Second, the stability and maintainability of any system

dedicated to service require that its inner workings be

refully documented. Both internal and user documentation

have been improved during the reporting period.

5.1 Version 3 Manual

Since Version 1 of the Datacomputer contains many new

features, and since some old features have taken on new and

different forms, the writing and publication of a Version 1

Datalanguage manual has been given high priority. Some

material from the Version 0/11 manual has been retained, but

most is completely new. Th» anticipated publication date for

the new manual is early fall.

5.2 Support Program Documentation

At the end of the reporting period, documentation for

the RDC and DFTP programs with Version 1 modifications v.as

almost ready for distribution. This documentation is less

- 46 -

^M MM«. [^miaaä^m^ma. m^t.

■pi*, ii i -^^mimmimmmm oimmm^mi^^^mmmQmi^im i WW^PWP^«^«^

..

fi

D

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

formal than the Datalanguage manual, but is intended to be

complete and accurate. DCSUBR documentation has been sched-

uled for the next reporting period.

5.3 Directory System PLM

The primary piece of internal documentation to emerge

during the period is a program logic manual (PLM) for the

Services directory system. This document discusses in detail

both the internal structure of SV directories and the inter-

face with the Request Handler. In addition, the data struc-

tures needed for communication between SV and RP. are

defined. The directory system PLM marks a large step forward

in the documentation of the system internals.

- 47 -

MM ^MMH

^"Pwwwwp win i m^^^mmmmmm^m^uiutmu > ■ ■■■■■■■.is mi ■ immmm^tmm^mmK^vfm m

u

I

|D n

;

I

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

6 Hardware / Site Progress

Activity in the hardware/site area of the Datacomputer

effort was mostly confined to planning during the reporting

period. The time thus spent should insure the smooth inte-

gration of the TBM system when it arrives.

It should be pointed out that the hardware and site

work presented in this section is f.nded by the NMRO con-

tract mentioned in the Overview rathe, than by tnt IPTO con-

tract which is the primary subject of tnis report.

n
6.1 Site Improvements

Several changes in CCA's site will be necessary before

the TBM can L? installed. Among the most important are

increasing ehe capacity of the machine room air-conditioning

equipment, and re-arranging the machine room layout to make

way for the new equipment. Several potential contractors

weie contacted about the site work, and extensive discus-

sions were held with those who were interested.

6.2 TBM Negotiations

At the beginning of the reporting period, a contract

was signed with Ampex Corporation for the delivery of CCA's

TEra-Bit Memory system durincj August. At the end of the

period, it appeared that problems with the TBM-PDP-10 inter-

face specified in CCA's contract with Ampex might cause a

delay in the delivery.
- 48 -

i»m,i.iii i mi iia.^p lnmm«lpMFP■^«<n■n!•Pr,'^ -^mmmmjmmmmmiii 11. nmwrn-iman II.M i.l«ppH!g|m^«P

u

,:

Ü

D
D

Semi-Annual Technical Report Datcomputer Project
Computer Corporation of America July 31, 1975

The interface normally sold by Ampex provides access to

data on the TBM only via a disc staging device. CCA speci-

fied (and was promised by Ampex) an interface which provided

for the reading of TBM data blocks directly into PDP-10

memory. This access style is necesary for the construction

of the Datacomputer as originally designed. Decisions about

the staging of data will be made by the Datacomputer after

the data has been read into main memory.

6.3 TENEX Changes

During the reporting period, the 128K word memory sys-

tem (a Cambridge Memories, Inc. system provided by Charles

River Data Systems) was added to the CCA PDP-10 system. This

addition was extremely important in that CCA was quite short

of core space, but it was also the source of many problems

during the period.

Since CCA was the first installation of the system, our

machine was essentially the test bed for debugging a new

memory controller design. The problems which arose from this

situation, combined with quality control problems in the

supposedly reliable core stacks caused many interruptions in

TENEX/Datacomputer service. All problems were solved by the

end of the reporting period, and service has become quite

solid.

- 49 -

 —

»■ ■ ■ ,<,mamnmm^ m. m< ■III>J« mil ipn mi in i ü i ■■■i mi n mi ii.« ui ?■■ "i ■ im

...

„

,.

..

Semi-Annual Technical Report
Computer Corporation of America

Seismic Data Base Support

Datcomputer Project
July 31, 1975

As mentioned in the Overview, some work on the Datacom-

puter is funded under a separate contract from the Nuclear

Monitoring Research Office of ARPA. A short discussion of

it is included here because it is intimately related to the

work of the primary Datacomputer development contract. In

particular, the Ampex Tera-Bit Memory, about which so much

has already been said, and the additional core mentioned

earlier (which serves as a buffer for TBM blocks) are being

paid for by the NMRO contract.

This work is specifically directed at establishing an on-

line, real-time data base of seismic data from sites all

over the US, and making that data available to analysts in a

convenient way. The Datacomputer was chosen as the best

vehicle currently available to do the job.

7.1 Overview

Since the system as envisioned will work in pseudo-real

time, the ARPANET was chosen as the most appropriate commun-

ications medium available (as opposed to mailing tapes, high

speed dial-up or leased lines, etc.). Seismic data is col-

lected from sensors scattered all over the country, then

transmitted to CCA over the network. At CCA, a small compu-

ter known as the Seismic Input Processor, or SIP, absorbs

the incoming data (whose data rate is projected to be on the

- 50 -

^tenHju-M _1^^__1-__ ■ ■

IHJIIII» i|i m^m^^itw ■• ■ i UUPWH. i "Ji>iifj"iinn Miii.i.ii iiiinippppiniKvq.uL i. 111n n^pp^m^w imm^imv in «■mpnffw^^'^' ijpi«!« iiiinjjii|ai.iq||

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

order of 20 thousand bits per second), and stores it on its

own disc. At pre-determined intervals, the SIP connects to

the Datacomputer (again via the network), and dumps the col-

lected data into the Datacomputer at a very high rate.

Thus, the Datacomputer-Seismic data colection center connec-

tion doesn't have to exist 24 hours a day, which reduces

stress and strain on the Datacomputer most of the time. In

addition, the SIP, being a mini-computer, is expected to

have fewer failures than the Latacomputer.

7.2 SIP Acquisition

The SIP hardware, a PDP-11 with two spindles of 3330-

equivalent disc and appropriate communications hardware, was

delivered during the reporting period. Problems with the DEC

discs, and with delivery of the cable which connects the SIP

with the CCA TIP impeded progress, but by the end of the

period, everything seemed to be running smoothly.

7.3 IMP/TIP Considerations

There has been some question as to whether the data

rates envisioned for the seismic data application are in

fact possible and practical with the current datacomputer

hardware. In particular, the bandwidths expected through the

CCA TIP are pushing the design limits of that device.

Incoming data from the seismic data collection cente.' is

expected at 20,000 bits/second, and the SIP is expected to

- 51 -

■

i ii itmm^m^mi ii w i »-wpmppipnpi 1111 wBrn^m^ »^^^■«^^^^■W^^BP-^WP -"——"" »W"

Ü

i

D

|J

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

burst data to the Datacomputer at approximately 80,000

bits/second. As discussed above, the maximum bandwidth of an

IMP or TIP where traffic to other network nodes is concerned

is about 50,000 bits/second. When two hosts are connected to

the same Network node, as is the case her a with the SIP and

the Datacomputer, that potential bandwidth is much higher.

The envisioned data rates are realizable, but with one

problem. The TIP as a network node, due to the nature of its

multi-function design, has less computing power available

for the IMP sub-network functions than does a regular IMP.

Therefore, some discussion was held during the reporting

period as to the desirability of replacing the CCA Tip with

an IMP.

The only problems with such a step ate that CCA uses

the TIP's special terminal handling characteristics exten-

sively, so ether arrangements for handling the devices cur-

rently attached to the TIP would be needed before the TIP

could go away without adversely impacting CCA's work.

- 52 -

m*—m—m

uyii.miiNu wtwuiwiii ymiL ■;>«■■ ,.HI«,1.1 a.up«n' i ■' m— ■ ' ! m«mw***^*^mm-^mm*imii'*iimmmm^^mm*m» 11 .•■'"'

fl

fl

..

4 ,

..

..

Semi-Annual Technical Report
Computer Corporation of America

8 Other Activities

Datcomputer Project
July 31, 1975

8.1 NCC Paper

A technical paper titled "The Datacomputer - A Network

Data Utility" was prepared for the 1975 National Computer

Conference. Authored by Thomas Mar ill and Dale Stern, it

presented a conceptual overview of the Datacomputer system,

and attempted to provide some flavor as to what styles of

systim usage were expected and planned for. "t is included

as Appendix 1 of this document.

8.2 Performance Monitoring

The performance of tne Datacomputer has oeen a contin-

uing interest of the stuff. Several small, ad hoc tests have

been run to get some feel for various aspects of Datacompu-

ter performance. The primary result of these experiments

has been to point up the desirability of more extensive,

planned system metering and evaluation. With adequate

instrumentation, we could begin to see what parts of the

software would benefit most from tuning, what parts need

complete re-design, what types of files are most expensive

to handle, what data-management requests are least effi-

cient. By the same token, we would be able to recomment to

users file structures and access parameters which would be

most efficient. Instrumentatic and metering must be high

priority items in future Datacomputer development.

- 53 -

■ ii iiiipiii^Bwm i i i j[I II wp " '• ' "l"! ■■■■"■II ■■!

D

U

Semi-Annual Technical Report
Computer Corporation of America

Datcomputer Project
July 31, 1975

8.3 Testing and Bug Monitoring

A substantial effort has been made in the area of Data-

computer reliability testing and monitoring. A set of stan-

dard test scripts was generated, and a continuing effort to

construct tests for new and esoteric features was main-

tained. The goal of this effort was to have a set of bench-

mark procedures which would test all features of the Data-

computer in all interesting ways. This goal has not been

reached, since new bugs appear fairly often which are not

caught by the test procedures. By the time the Datacomputer

becomes a standard network service, a complete set of tests

should exist wnich could guarantee that new releases of the

system would not contain any newly introduced bugs in things

which used to work.

i

- 54 -

wfmmmmmm^ m »—^-^ iiu^m*m*^mmmimtm?m*mr~~'^m^m—"' '-'^

„

D
n

:

■

"

Rep- nied from — I

AFIPS - Conference Proceedings

Volume 44

© AFIPS PRESS
Mentv«!*, N. J. 07MS

The datacomputer—A network data utility*

by THOMAS MARILL and DALE STRRN
Computer Corpomfton of America
Cambridge, Massachuscttii

OVERVIEW

The Datacomputer is a large-scale data n .nagement and
storage utility for use by a network of imputers. The
system is designed to provide facilities »Jl data sharing
among dissimilar machines, rapid access to large on-line
files, storage economy through shared use of a trillion-bit
store, and improved access control.

The present paper provides a conceptual overview of the
system. Detailed treatment of the access language,
software architecture, and relation to other developments
in the database field*"" will be taken up in subsequent
papers.

NETWORKS AND UTILITIES

Starting in the early 1960s, the idea that stand-alone
computers cou'd cooperate through communication
facilities began to be explored,' and the concept of the
resource-sharing network evolved.' In such a network,
each computer draws on the others to supplement its own
resources of hardware, software, and data. Today, the
best-known network of this type is the Arpanet,' which ties
together some forty-odd computers of different types.

Within a resource-sharing network, there is a natural
tendency toward specialization of network nodes. Thus,
for example, medium-scale machines with good time-shar-
ing facilities will be used for interactive processes, but
heavy scientific computation will tend to be passed to
other machines that are particularly adept at such tasks.
The factoring of problems into their constituents, the
assignment of these constituents to the appropriate ma-
chines, and the recom'jnat;on of results will tend to be-
come an automatic process

In the limit, specialized network nodes become what
may be termed "utilities", that is, machines which
perform a restricted range of functions solely for the
benefit of the other machines. The Datacomputer is a net-
work utility in this sense. It is entirely specialized for the
performance of data management and storage functions. It
offers resources to other machines on the net but does not
draw on the resources of these machines.

One may speculate that the trend toward specialized

* Work supported by the Advanced Research Project» Agency. Depart.
mem of Defense

network utilities will continue, and that the traditional
stand-alone general-purpose machine will eventually
disappear from the scene. The computer world envisioned
in such a speculation might consist of a network contain-
ing a few very large Datacomputer-like systems, a few
very large computational utilities ("number crunchers"),
and a large number of small human-interaction units
(such as intelligent terminals), having limited computa-
tional power and local storage. It is not clear that anything
else is needed

The justification of network utilities must primarily, of
course, be made on economic grounds, by demonstrating
that economies of scale and economies of specialization
can be realized. In the case, specifically, of a data utility,
there is an added justification: centralization reduces the
severity of the technical problems of data sharing and may
also alleviate some of the problems associated with pri-
vacy. If all data is kept in one box, one knows where to go
look for it; by the same token, one knows where the con-
trol and protection procedures must be applied.

DESIGN CONCEPTS

Logically, the Datacomputer system can be viewed as a
box which is shared by a variety of external processors,
and which is accessed in a standard notation called "data-
language." (See Figure 1.) The present section discusses
the principal concepts underlying the design of the system.

Network data sharing

The Datacomputer provides data sharing services
within a network environment. There are three principal
design implications of this fact.

Data conversion

A database stored on the Datacomputer is sharable by
all computers having access to the system. Thus, a single
database is shared not only amo ig users of different
interests, but among users of different hardware.
Character codes, floating point number representations,
and word sizes vary from user 'o user; so do the
'epresentations of variable length and variable structure,
as well as high level data structure attributes. The

;i89

vr
■- ■■' '*mm

' '" ■"""' "■—~^-~" ■ "" ' - ■p OTWMP m&rwf* . . ■«■ mm*., .^IIIJI JP«^I«*MI itMimi.mmiutm mi<mmmmmti ui

;i9<) National Computer Conference, 1975

OATACOMPUTt

Fiiturr I Logical view of datacunipulc

Datacomputer system is required to perform translations
between various hardware representations and data
structuring concepts.

Characters, bytes, and numbers are stored under the
control of the machine storing the data. The machine read-
ing the data specifies the format it requires. As data is
output, the indicated data conversions are performed.

Self-contained requests

In most approaches to data management (for example,
the CODASYL approach4) the assumption is made that
the data management system is in close contact with the
application prog; am. Thus the data management system
can rely on the full capabilities of an application language
(for example, COBOL) as being immediately available for
processing the data.

This is not the case in a network environment, where the
bandwidth between the application program and the data
management system is relatively low. Thus, datalanguage
must be designed to allow self-contained requests to be
shipped to the Datacomputer to be executed there in toto

Consider, for example, the problem of updating a large
personnel Tile to reflect an across-the-board salary increase
of 5 percent. In a conventional approach, the application
program would sequentially obtain every record by mak-
ing appropriate calls to the data management systen., up-
date the salary fiWd, and replace the record (or build a
new file) by calls to the data management system.

In a rietwork, such an approach would be undesirable
for large files, since it would require the entire Tile to be
shipped twice, once to the application program, and once
again back into storage. Accordingly, datalanguage is
designed so that self-contained requests may be shipped to
the Datacomputer from the application program. The
Datacomputer itself performs the indicated function and
signals the application program that the job has been com-
pleted, without requiring the records to be shipped to the
application program.

Datalanguage does not, however, prevent the user
program from generating a request which would cause the

Dat^computer to ship an entire file to the requesting com-
puter. That is, the Datacomputer can be used as a "file
manager" in the style of the TABLON system,* as well as
a data managen ent system. For small files, this may be
the preferred mode jf use. For example, a short document
that needs to be edited might best be shipped as a unit to
the machine on which the editing will be performed, and
then shipped back for storage.

Computer-oriented

The Datacomputer communicates with programs that
run on remote machines. The fact of remoteness precludes
the use of simple subroutine calls or similar means of com-
munication conventionally used withlp a single machine.
The communication, furthermore, is not wilh people at
terminals, who can be expected to make intelligent
responses when failures or unusual circumstances occur,
but with programs. Hence, all synchronization messages,
error messages, language statements, and file descriptions
must be creatable and readable by programs; likewise, a
facility for checkpointing by user programs is required.

Large on-line files

The Dat.'computer is designed to have an on-line
storage capacity of a trillion bits and to accommodate a
wide variety of file sizes. In particular, the system handles
files whose size approaches the total available space, that
is, files in the trillion-bit range. To achieve efficient access
to such files, two special facilities are included.

Inverted file structure

No adequate large file system can be designed without
providing some mechanism for calculating the location of
data in storage, given the attributes of the data to be
retrieved. In the Datacomputer, this capability is achieved
through a system of inverted files.*

At tHp user's option, files stored at the Datacomputer
are totally or partially inverted. Once the file has been
loaded, the inversion tables, are maintained automatically
by the system and need not be of concern to the user.
Requests against a file may be composed without
knowledge of the inversion options that have been seler.ed
for that file. The system will use the inversions, o the
extent that they apply in a particular request, to limit the
amount of sequential search that must be performed,
thereby speeding up its retrieval process.

Multiple staging strategies

Internally to the Datacompuler, all data is physically
organized into pages which move among the three levels of

• In a dtreel lile nnf hsti,. for each entity, the properties of that entity In
an micrted fde (also called HtlOTMMl one lists, for each property, the
entities (or the location of the entiliesl having that properly

sz

'■»" ■ '"> mmmmmmmmi^m^

:

The Dalacomputer ID I

..

.

storage: primary (core), secondary (disk), and tertiary
(mass store). The movement ol pages is dictated by
various staging strategies. The particular strategy used is
selected by the system to optimize the requests currently
being executed. The fact that the Datacomputer can itself
select among the available strategies hinges on the fact
that entire requests are transmitted to tf.e system, inform
ing the system at one time of the user's ii.'ent with respect
to a given file.

Examples of staging strategies are as follows:
(i) Move the whole file to disk and work from disk. This

strategy is applicable to small files that easily fit into the
available secondary storage buffer area.

(n) Move pages from tertiary store to core, process the
pages, and output directly from core, bypassing disk. This
strategy is applicable, for example, in the case where only
a small portion of the data read from tertiary storage is to
be sent to the user.

(iii) Break the request down so as to operate on seg-
ments of a file, and stage to disk one segment at a time.
This strategy becomes particularly effective when in
formation is available (from the inversion tables, for
example) to indicate that some segments ue not needed to
fulfill the request, and can therefore be skipped.

access regulation

The problem of controlling the access of programs to
data in a general-purpose machine is notoriously difficult.
By definition, a general-purpose environment allows the
programs within it enormous latitude in the functions they
can perform, and it appears that programs can often be
written to circumvent existing access regulation
procedures by taking advantage of coding errors in the
operating system, hardware bugs, momentary malfunc
tions, or operational errors that arise in unexpected cir-
cumstances. Such hostile programs are sometimes able,
without authority, to access data, delete data, or crash the
system and prevent othe' users from legitimately access-
ing data.

In the environment of the Datacomputer, the situation
is quite different, since the system is logically a closed,
dedicated, special-purpose box, which responds only to a
limited set of commands and does not provide a general
purpose computing facility. A hostile user program cannot
be run on the box because the box does not run user pro-
grams. The approach can inherently provide stronger
guarantees that programs without proper access authority
will not be able to access or damage data contained in the
Datacomputer. It is possible though this needs to be ex
plored further that the Datacomputer approach lends it-
self to a proof that unauthorized access cannot occur.

Economy of scale and specialization

A variety of mass storage devices are coming on the
market. These devices the Ampex TBM, IBM 3850,
Precision Instrument 190, among others all have very

PHIMAHY

STORAGE

, EMORV BUS

1
SECÜNDAHV

STORAGE
SYSTEM

PROCESSOR
TERTIARY

STORAGE

I/O aus

1
IMP

INTERFACE PERIPHERALS

IMP

ARPANET

FiKure 2 Hardware nvcrv lew of syMcni

high price tags, ranging from several hundred thousand to
several million dollars, depending on configuration. They
all. however, provide very low per-bit unit cost, with the
lowest per-bit cost occurring in the largest configurations.
Thus, while few stand-alone installations could afford the
entry price, by pooling many users' requirements into a
shared Datacomputer facility, the low per-bit cost of the
mass store can be passed on to the users.

The savings can be substantial. Disk storage equipment
(at the low end of the currently-available price-range)
costs about $20 per megabit of storage. Mass stores cost
about $1 per megabit, some twenty times less. All of these
prices may be expected to decrease as technology
improves, but there is no reason to suppose that the rela-
tive advantage of 'he economy of scale will not remain.

Certain addit onal economies can also be realized
through specialization. In dr signing a specialized system it
is possible to choose hardware and implement software in
such a way as to optimize for the particular application,
since there is no requirement to provide general-purpose
services. In the particular case of the Datacomputer, it is
possible to take advantage of new technologies as they be-
come available, by making internal modifications and ad
ditions to the hardware and software of the system. This
can always be done so long as datalanguage remains in-
variant, since the user program does not "see" the
hardware or software of the system.

HARDWARE OVERVIEW

The architecture of the system is shown in Figure 2. The
system processor is a DEC System-10 (PDP-10). Memory
is present at three levels: core, disk, and TBM.' Pe-
ripherals are used for software development and for input

5-7

"«■MWiMM

•m^mmmmmmmm wmmnmrmmmmmm' >■ "> i«1« iimm~imm^mmmmm'***^Fi mmrmmimm^' iwwi^mmmm^^m

392 National Computer Conference, 1975

DATA

oo oo oo 00

DATA
CHANNELS

(SWITCHI

OO TAPE
TRANSPORTS

CONTROL

] (SW1T

TRANSPORT
DRIVERS

Figure I Amptx TBM confiüufa.iijn

of data from tape. The system is interfaced to the Arpanet
IMP,' which in turn interfaces to two 50 kilobit/second
telephone lines into the network.

Figure 3 shows in greater detail the configuration of the
Ampex TBM tertiary storage subsystem. The system
consists of three types of components, interconnected by
two banks of switches. Channels are subdivided into two
half-channels, one for reading and one for writing, each
with a 6 megabit second bandwidth. Each tape transport
has two tapes, with a combined capacity of about 10" bits;
the maximum configuration has 64 tape transports. The
transrort drivers, or controllers, are switchable to any ot
the transports. In operation, a transport driver is switched
to a tape transport, which is in turn switched to a data
channel. Control information is passed to the transport
driver, and data flows through the data channel. Data is
written redundantly on the tape in a helical video scan
with a density of 1 megabit/square inch. The average ac-
cess time is 15 seconds.

DATALA iGUAGE

the diversity of the user community. Data attributes
which are ignored in other systems must be specified in
this environment. The user must be able to map the data
representations and data structuring concepts of his own
machine onto those of the Datacomputer.

A basic characteristic of datalanguage is that all data is
described. Descriptions are stored in the Datacomputer di-
rectory and are available to the user program in machine-
readable format. A description contains the information
needed to interpret the data, that is, information on data
representations and structure.

An 1/0 transaction requires two descriptions: one for
the data as it is stored the "file description" and one
for the data as it comes in or goes out over the net-
work the "port description." Through the file descrip-
tion, the data administrator has control of how his data
will be formatted on the Datacomputer. He can choose the
representation that corresponds to the way the data will be
accessed most frequently. In this way, the computation
needed for reformatting is minimized, and higher
bandwidths in and out can be achieved. Through the port
description, the end user controls how the data as he sees
it >.n his machine is formatted.

The data description facilities foi ports and files are
identical. In moving data between a file and a port, the
Datacomputer performs the necessary reconfigurations of
the data, including conversion from one elementary data
type to another and pruning and reordering of branches in
a hierarchical data structure.

Figures 4 and 5 show a port and file description, respec-
tively, for a file of weather data. The port, called
RESULTLIBT, contains a list of "structs", called
RESULT. Each RESULT has a city, date, and a
minimum and maximum temperature. In this particular
example, all of the data elements are fixed-length ASCII
strings.

The file, called WEATHER, is tre^structured. Each of
the 5.000 stations has some identifying information about
the station and then a list of 31 weather observations.
I = D indicates that the inversion option is being chosen
for BSN, CITY, and REGION. This will cause the
Datacomputer automatically to build inversion tables,
which allow for content-based retrieval without sequential
search of the data base.

Figure 6 shows a retrieval request that selects and
outputs dt.ta based on the value of REGION and the

Datalanguage is the language in which all requests to
the Datacomputer are stated. Datalanguage includes
facilities for data description, for database creation and
maintenance, for selective retrieval of data, and for access
to a variety of auxiliary facilities and services.

Datalanguage is a high-level language, which presents
the user with a view of data which is independent of
considerations of the physical devices on which the data is
stored. The end user need not concern himself with search
and scheduling techniques that are device-dependent.

Data representations are a special concern, because of

CREATE RESULTLIST PORT LIST
RESULT STRUCT, PsEOR

CITY STR (22)
DATE STR (3)
TEMPERATURE STRUCT

MIN STR (1)
MAX STR CO
END

END
»

Kitfure 4 Sample datalantiuaK*1 port dest nptmn

J57

 i
■ ■

■A i,wwpiiuiiu«nwnuiimii"(ui iw^n!mm^^^^m^^miimf^mm>'^irv^'fW'J'" *■' I.MPPI,IIII"I^TIB»^^*W"I"'-'"»I,I !w i in.mmf9>.>ßm.i" "J """ *"■> "■ .«n mm

D The Datacomputer 393

1

maximum temperature.* The for-loop selects those sta-
tions with REGION equal to Massachusetts. Since the
inversion option was chosen for REGION in the file
description, the Datacomputer does not actually look at
each station, but uses the inversion to find the selected sta-
tions. However, the user program submitting the retrieval
request need not know that REGION is inverted; the
request could be executed in any case.

For each of the selected stations, the second for-loop
retrieves observations with TEMPERATURE.MAX
greater than 300 (degrees Kelvin). Transmittal of data is
indicated by assignment. Each RESULT record has four
values: CITY, DATE. TEMPERATURE,MAX, and
TEMPERATURE.MIN.

This example maps data from a '.' level tree-structured
file to a 1-level tree-structured p.rt. Tl.» observations in
the port, unlike the ones in the file, are not organized by
station; rather, the CITY is repeated for each output
record.

In order for a request submitted by another machine to
be executed, the Datacomputer must synchronize with
external processes. Figure 7 shows the same request as
above, along with the messages needed for synchronization
of the Datacomputer and the other process. The first five
characters are coded to be machine-processable. For
example, the .1200 message indicates that the Datacom-
puter is ready for more datalanguage. Other messages
direct the user program to send data, to send a new
request, to close out the transactions, etc.

CREATE WEATHER FILE LIST(0,5000)
STATION STRUCT

P«E0f-

BSN
CITY
REOION
WORLD
OBS

STR(6), I»D
STR(22), I«D
STR(22), I«D
STR(22)
LIST (31)

OBSERVATION
DATE STR(3)
TEMPERATURE

MIN STRCO
MAX STR(I4)

PRECIP STRCO
WINDS STRUCT

SPEED
GUSTS
DIRECTION

VISIBILITY
CLOUDS STRC»)
GENERAL STRCO
PRESSURE

STRUCT

STRUCT

END

STRC»)
STRC»)
STRC»)
STRC)

END

STRC») END
END

Figure 5 Simple daUlanguage Hie deicription

' Theiymbols " '" «nd "*/" «re delimitera for commenU.

*T

OPEN »fSULTLIST |
OPEN UEATHCR ;

FOP lll«THE«.ST<TI0a KITH »t'.lCh EQ ' HiSSlCHUSCTTS
ro* PESULTLIST.PISULT, OBSEPV>T10« WITH IIHPI»»IUPt.M»I GT ' 300'

/• 300 (ELVIN IS SO rtHPEKHElT. IH17 IS HOT
III OCTObE« IP M<SS»CMU5tTT5 •/

PESULT.CITT ■ MMUIH.I III |
»tSULt.OlU ■ OBSEPVtTIOP.MTE ,
PESULT.IENPCPITUPC ■ OIJtPXTlO« .TEMPE PtTUPf |
CUD ;

Figure 6 Sample datalanguaüe retrieval request

STATUS OF DEVELOPMENT

The Datacomputer has been offering service on the Ar-
panet since late 1973, using disk-storage only. Installation
of the TBM tertiary store is scheduled for 1975.

The system is undergoing a phased development; suc-
cessive versions offer increased capabilities to users by
providing increasingly larger subsets of datalanguage.
Thus, the development proceeds in an operational setting
in which design errors and implementation bugs can be
discovered early through feedback from actual users.

The version of the system currently offering service on
the Arpanet (Version 0/11) is an intermediate version
which provides adequate facilities for many applications,
such as the ones described below, but by no means for all
applications. An enhanced version is scheduled for mid-
'75, with additional capabilities planned beyond that date.

As successive versions extend the range of datalanguage,
previously written user programs incorporating datalan-
guage can either remain invariant or may require small
modifications. Changes to Datacomputer hardware, such
as the installation of TBM, are not reflected in datalan-
guage, and therefore require no change to user programs.

APPLICATIONS

In this section three representative applications of the
Datacomputer are discussed. The first two are in opera-
tion, and the third is currently being developed.

On-line information retrieval

As a service to the Arpanet community, a program at
MIT Project MAC automatically surveys the status of all
Arpanet hosts three times per hour around the clock. At
each run, the SURVEY program attempts to cok ^ct up to
each host, and stores the data, time, status, and .esponse
time. The data is automatically passed to the Datacom-
puter, where the historical SURVEY file is then updated
by the current data.

As a companion to the data-collection facility, SURVEY
provides on-line user functions that allow the database to
be interrogated. A user on the network logs into MTT and
composes his request for information in the on-line lan-
guage supplied as part of the SURVEY application. The
SURVEY program translates these requests into datalan-

■MMMMI

"iiiii- u^^w^prmufpp^iBinwpipiw mm*^*l^*mm^m*^*K,r*mm'^i'' i "i ,"i ' ' '.»p

•94 National Computer Conference, 1975

;J200 11-11-7»« 1207
.1210 1 1-1 l-T* 1207
OPEN RESULTLIST ;
;U000 11-11-7« 1208
;J209 11-11-7'4
;J200 11-11-7«»
.1210 11-n-7M
OPEN WEATHER
;J209 11-11-7'»
;J200 11-11-7'«
.1210 1 1-1 1-7^

1208
1208
1208:09

53
53

09
;09
;09

1208:12
1208:12
1208:12

RHRUN: HEADY FOR REQUEST
LACC: READING NEW DL BUFFER

DHKD: ADDING PUNCTUATION
RHRUN: EXECUTION COMPLETE
RHRUN: READY FOR REQUEST
LAGC: READING NEW DL BUFFER

RHRUN: EXECUTION COMPLETE
RHRUN: READY FOR REQUEST
LAGC: READING NEW DL BUFFER

.1210 11-11-7M 1208:12 LAGC: READING NEW DL BUFFER
FOR WEATHER-STATION WITH HEGION EQ 'MASSACHUSETTS
,1210 11-11-7« 1208:1H LAGC: READING NEW DL BUFFER

FOR RESULTLIST.RESULT, OBSERVATION WITH TEMPEHATURE.MAX
.1210 11-11-7'* 1208:11 LACC: READING NEW DL BUFFER

.1210 11-11-714 1208:11» LAGC: READING NEW DL BUFFER
/• 300 KELVIN IS 80 FAHRENHEIT, THAT IS HOT

.1210 11-11-71» 1208:15 LAGC: READING NEW DL BUFFER
IN OCTOBER IN MASSACHUSETTS •/

.1210 11-11-7'» 1208:15 LAGC: READING NEW DL BUFFER

GT 300'

.1210 1 1-
1

.12 10 1 1-
I

.1210 1 1-
1

.1210 1 1-
I

.1210 1 1-
END

;J205 11-
.1211 11-
SOUTH WEY
SOUTH WEY
NORWOOD
.1261 11-
;J209 11-
;J200 11-
,1210 1 1-

16 LAGC: READING NEW DL BUFFER
r STATION,CITY ;
18 LAGC: READING NEW DL BUFFER
s OBSERVATION.DATE ;

11-7'« 1208
ESULT.CITY
11-7«« 1208
ESULT.DATE
11-7« 1208
ESULT.
1 1-7««
ND ;
11-7«« 1208:20 LAGC: READING NEW DL BUFFER

18 LAGC
.TEMPERATURE s
1208:19 LAGC

READING NEW DL BUFFER
OBSERVAT ION.TEMPERATURE
READING NEW DL BUFFER

1 1-7««
1 1-71
MOUTH
MOUTri

1 1
1 1
1 1
1 1

•71
•71
•71
•71

1205;
1208;

1208
1208
1208

2 3 RHRUN:
26 OCPOO:

283 281
287 279
288 271

29 OCPOC;
30 RHRUN;
30 RHRUN

SUCCESSFUL COMPILATION
(DEFAULT)

320
320
326

(DEFAULT)
EXECUTION
READY FOR

OUTPUT PORT OPENED

OUTPUT PORT
COMPLETE
REQUEST

CLOSED

1208:31 LAGC: READING NEW DL BUFFER

Figure 7 Sample dataiomputer nutput and pmlocol messaRes

guage, sends the datalanguage to the Datacomputer,
receives output from the Datacomputer, and presents the
output to the user at his on-line terminal. The database
management functions are all performed at the Datacom-
puter.

File management

A university computer center on the Arpanet routinely
uses the Datacomputer system in a file management ap-

plication, by means of a program called Datacomputer
File Transfer Program (DFTP), which runs at the com-
puter center. This program allows a local user program to
store a file on the Datacomputer, retrieve a file, and add
and delete a directory node. All DFTP-Datacomputer dia-
logue (datalanguage and protocol messages) is invisible to
the user; the operation is automatic; access control
mechanisms are provided. DFTP is particularly useful in
this situation because the computer center is short of on-
line storage for its users, and alternative solutions would
involve magnetic tape and manual intervention.

Cö

M ■■■ J

im^mimmmmmmnm'^mi ■i niiwn mtm n\ <tm^i^mmmKmmimm*mimm^mm**mmm' "i ■ -^mmmmmmmim

..

..

I""
ü

i
o

Large shared file with multi-host access

In an application under development, the Datacom-
puter will be used as a central storage location and dis
tribution point for a large database of seismic data
collected from around the world in real time. Data will
flow through the Arpanet to the Datacomputer, v herp it
will be stored on-line. The data.rate into the Lalacom-
puter will grow over time, reaching a maximum oi about
20 kilobits per second, 24 hours per day (6.3X10"
bits/year). Users of the data will be able to access the
central database from any host machine in the Arpanet.
By sending proper datalanguage requests to the Datacom-
puter, the host machine will be able to select arbitrary
subsets of the large file and have these subsets shipped
back in formats suitable for the particular host.

ACKNOWLEDGMENTS

Mt.ny people in the Datacomputer group at CCA have
coi tributed to the dc 'dopment of the system, and their
contribution is gratefully acknowledged. Special thanks
are due to Richard A. Winter, Hallam G. Murray, David
W. Shipman and Jeffrey M. Hill.

The Datacomputer 395

REFERENCES

1. Morill, T and I. (1 rtotwrts. "TMWd a Cooperative Network of
Time-Shared Computers," /Wpcdm/(s AFIfS Fall Joint Computer
Conference. 1966, pp 425 «1

2. Roberts, L. G. and B. I) Wessler, 'Computer Network Development
to Achieve Resource Sharing." Pmieedings AFIPS Spring Joint
Computer Conference. 197(1, pp 5411-549.

3. Heart. F. E., R E Kahn, S M Ornstein, W R Crowther, and D. C.
Waiden, "The Interface Message Processor for the ARPA Computer
Network." Proceedings AFIPS Spring Joint Computer Conference.
1970, pp. 551-567.

4. CODASYL Data Rase Task Group Report. ACM, New York,
October 1969 and April 1971.

5. Gentile, R B and J R. Lucas, "The TABLON Mas« Storage Net
work," Proceedings AFIPS Spring Joint Computer Conference. 1971,

pp. MMM.
6. Damron, S., J. R. Lucas, J Miller, E Salbu, and M Wildman, "A

Random Access Terabit Magnetic Memory," Proceedings AFIPS
Fall Joint Computer Conference. I96H, pp 1381 1387.

7. Codd, E. F., "Recent Investigations in Relational Data Base
Systems." IBM RJ. 1385, April 1974

8. Model 204 Database Management Software System-User Language
Reference Manual. ConpHM Corporation of America. September
1974.

9. Canaday, R. H., R I). Harrison L. I, Ivie, J. L. Ryder, I.. A. Wehr,
"A Back End Computer for Data Base Management," Communica-
tions ACM. 1974, pp. 575-582

^/

Mi

